Gujarat Board GSEB Solutions Class 9 Maths Chapter 2 Polynomials Ex 2.3 Textbook Questions and Answers.
Gujarat Board Textbook Solutions Class 9 Maths Chapter 2 Polynomials Ex 2.3
Question 1.
Find the remainder when x3 + 3x2 + 3x + 1 is divided by
1. x + 1
2. x – \frac {1}{2}
3. x
4. x + π
5. 5 + 2x
Solutiobn:
p(x) = x3 + 3x2 + 3x + 1
1. Let x + 1 = 0
x = – 1
Then p(-l) = (-1)3 + 3(-1)2 + 3(-1) + 1
= -1 + 3 – 3 + 1= 0
∴ Remainder = 0
2. Let x – \frac {1}{2} = 0
x = \frac {1}{2}
Then p (\frac {1}{2}) = (\frac {1}{2}) + 3(\frac {1}{2}) + 3\frac {1}{2} + 1
= \frac {1}{8} + 3 x \frac {1}{4} + 3 x \frac {1}{2} + 1
= \frac {1}{8} + \frac {3}{4} + \frac {3}{2} + 1
= \frac{1+6+3 \times 4+1 \times 8}{8}
= \frac{1+6+12+8}{8}
= \frac {27}{8}
Hence, remainder = \frac {27}{8}
3. Let x = 0
Then p(0) = 03 + 3(0)2 + 3(0) + 1 = 1
∴ Remainder = 1
4. Let x + π = 0
x = – π
Then p(- π) = (-π)3 + 3(-π)2 + 3π + 1
= -π3 + 3π2 + 3π + 1
∴ Remainder = -π3 + 3π2 + 3π + 1
5. Let 5 + 2x = 0
2x = -5
x = \frac {-5}{2}
Then p(\frac {-5}{2}) = (\frac {-5}{2})3 + 3 (\frac {-5}{2})2 + 3(\frac {-5}{2}) + 1
= \frac {-125}{8} + \frac {3 x 25}{4} – \frac {15}{2} + 1
= \frac {-125}{8} + \frac {75}{4} – \frac {15}{2} + 1
= \frac{- 125 + 150 – 60 + 8}{8} = \frac {-27}{8}
∴ Remainder = \frac {-27}{8}
Question 2.
Find the remainder when x3 – ax3 + 6x – a is divided by x – a.
Solution:
Let p(x) = x3 – ax2 + 6x – a
and x – a = 0
= x = a
∴ p(a) = a3 – a x a2 + 6a – a
= a3 – a3 + 6a – a
p(a) = 5a
Hence remainder = 5a
Question 3.
Check whether 7 + 3x is a factor of 3x3 + 7x.
Solution:
7 + 3x will be a factor of polynomial 3x3 + 7x if we divide 3x3 + 7x by 7 + 3x and it leaves no remainder.
Let p(x) = 3x3 + 7x
and 7 + 3x = 0
3x = – 7
x = \frac {-7}{3}
Now, p(x) = 3x3 + 7x
So p(\frac {-7}{3}) = 3(\frac {-7}{3})3 + 7(\frac {-7}{3})
= 3 x \frac {-343}{9} – \frac {49}{3} = \frac {-343 – 147}{9} = \frac {-490}{9}
∴ p(x) = \frac {-490}{9}
Hence p(x) = 0
∴ 7 + 3 x is not a factor of 3 x3 + 7x.