Gujarat Board GSEB Textbook Solutions Class 12 Maths Chapter 3 Matrices Ex 3.3 Textbook Questions and Answers.
Gujarat Board Textbook Solutions Class 12 Maths Chapter 3 Matrices Ex 3.3
Question 1.
Find the transpose of each of the following matrices:
(i) \left[\begin{array}{c} 5 \\ 1 \\ \hline 2 \\ -1 \end{array}\right]
(ii) \left[\begin{array}{cc} 1 & -1 \\ 2 & 3 \end{array}\right]
(iii) \left[\begin{array}{ccc} -1 & 5 & 6 \\ \sqrt{3} & 5 & 6 \\ 2 & 3 & -1 \end{array}\right]
Solution:
Question 2.
If A = \left[\begin{array}{ccc}
-1 & 2 & 3 \\
5 & 7 & 9 \\
-2 & 1 & 1
\end{array}\right] + B = \left[\begin{array}{ccc}
-4 & 1 & -5 \\
1 & 2 & 0 \\
1 & 3 & 1
\end{array}\right], then verify that
(i) (A+B)’ = A’ + B’
(ii) (A-B)’ = A’ – B’
Solution:
Question 3.
If A’ = \left[\begin{array}{cc}
3 & 4 \\
-1 & 2 \\
0 & 1
\end{array}\right] + B = \left[\begin{array}{ccc}
-1 & 2 & 1 \\
1 & 2 & 3
\end{array}\right], then verify that
(i) (A+B)’ = A’ + B’
(ii) (A-B)’ = A’ – B’
Solution:
Question 4.
If A’ = \left[\begin{array}{cc}
-2 & 3 \\
1 & 2
\end{array}\right] and B = \left[\begin{array}{cc}
-1 & 0 \\
1 & 2
\end{array}\right], then find (A + 2B’)
Solution:
A’ = \left[\begin{array}{cc}
-2 & 3 \\
1 & 2
\end{array}\right]. ∴ A = \left[\begin{array}{cc}
-2 & 1 \\
3 & 2
\end{array}\right] and B = \left[\begin{array}{cc}
-1 & 0 \\
1 & 2
\end{array}\right].
∴ A + 2B = \left[\begin{array}{cc}
-2 & 1 \\
3 & 2
\end{array}\right] + 2\left[\begin{array}{cc}
-1 & 0 \\
1 & 2
\end{array}\right]
= \left[\begin{array}{cc} -2 & 1 \\ 3 & 2 \end{array}\right] + \left[\begin{array}{cc} -2 & 0 \\ 2 & 4 \end{array}\right] = \left[\begin{array}{cc} -2-2 & 1+0\\ 3+2 & 2+4 \end{array}\right]
= \left[\begin{array}{cc} -4 & 1 \\ 5 & 6 \end{array}\right]
∴(A + 2B)’ = \left[\begin{array}{cc} -4 & 1 \\ 5 & 6 \end{array}\right] = \left[\begin{array}{cc} -4 & 5 \\ 1 & 6 \end{array}\right].
Question 5.
(i) A = \left[\begin{array}{c}
1 \\
-4 \\
3
\end{array}\right], B = \left[\begin{array}{lll}
-1 & 2 & 1
\end{array}\right]
(ii) A = \left[\begin{array}{c}
0 \\
1 \\
2
\end{array}\right], B = \left[\begin{array}{lll}
1 & 5 & 7
\end{array}\right]
Solution:
Question 6.
If (i) A = \left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right], then verify that A’A = I.
(ii) \left[\begin{array}{cc}
\sin \alpha & \cos \alpha \\
-\cos \alpha & \sin \alpha
\end{array}\right], then verify that A’A = I.
Solution:
Question 7.
(i) Show that the matrix A = \left[\begin{array}{ccc} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \end{array}\right] is a symmetric matrix.
(ii) Show that the matrix A = \left[\begin{array}{ccc} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{array}\right] is a skew – symmetric matrix.
Solution:
(i) For a symmetric matrix a = aij.
Now, A = \left[\begin{array}{ccc} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \end{array}\right]
a21 = – 1 = a12, a31 = 5 = a13
a32 = 1 = a23 a11, a22, a33 are 1, 2, 3 respectively.
Hence, aij = aji
∴ A is a symmetric matrix.
Alternatively:
A’ = \left[\begin{array}{ccc} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \end{array}\right]‘ = \left[\begin{array}{ccc} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \end{array}\right] = A.
∴ A’ = A ⇒ A is a symmetric matrix.
(ii) For a skew symmetric matrix
Question 8.
For a matrix A = \left[\begin{array}{ll} 1 & 5 \\ 6 & 7 \end{array}\right], verify that
(i) (A + A) is a symmetric matrix.
(ii) (A – A) is a skew symmetric matrix.
Solution:
(i) A = \left[\begin{array}{ll} 1 & 5 \\ 6 & 7 \end{array}\right] ∴ A’ = \left[\begin{array}{ll} 1 & 5 \\ 6 & 7 \end{array}\right]
∴ A + A’ = \left[\begin{array}{ll} 1+1 & 5+6 \\ 6+5 & 7+7 \end{array}\right] = \left[\begin{array}{ll} 2 & 11 \\ 11 & 14 \end{array}\right]
Here, a21 = 11 = a12
∴ A + A’ is a symmetric matrix.
(i) A – A’ = \left[\begin{array}{ll} 1 & 5 \\ 6 & 7 \end{array}\right] – \left[\begin{array}{ll} 1 & 6 \\ 5 & 7 \end{array}\right]
= \left[\begin{array}{ll} 1-1 & 5-6 \\ 6-5 & 7-7 \end{array}\right] = \left[\begin{array}{ll} 0 & -1 \\ 1 & 0 \end{array}\right].
Here, a21 = 1, a12 = – 1 or – a12 = 1.
∴ a21 = – a12 a11 = a22 = 0
∴ A – A’ is a symmetric matrix.
Question 9.
Find \frac { 1 }{ 2 }(A +A) and \frac { 1 }{ 2 }(A-A), when A = \left[\begin{array}{ccc} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{array}\right].
Solution:
Question 10.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix.
(i) \left[\begin{array}{ll} 3 & 5 \\ 1 & -1 \end{array}\right]
(ii) \left[\begin{array}{ccc} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{array}\right]
(iii) \left[\begin{array}{ccc} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{array}\right]
(iv) \left[\begin{array}{ll} 1 & 5 \\ -1 & 2 \end{array}\right]
Solution:
Choose the correct answer in the following questions:
Question 11.
If A and B are symmetric matrices of the same order, then AB – BA is a _____.
(A) Skew symmetric matrix
(B) Symmetric matrix
(C) Zero matrix
(D) Identity matrix
Solution:
A and B are symmetric matrices.
So, A’ = A and B’ = B.
Now, (AB – BA)’ = (AB)’ – (BA)’ = B’A’ – A’B’
= BA – AB [∵ B’ = B, A’ = A]
⇒ AB – BA is a skew symmetric matrix.
∴ Part (A) is the correct answer.
Question 12.
If A = \left[\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right] then A + A’= I, if the value of α is
(A) \frac { π }{ 2 }
(B) \frac { π }{ 3 }
(C) π
(D) \frac { 3π }{ 2 }
Solution:
A = \left[\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right] ⇒ A’ = \left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]
∴ A + A’ = \left[\begin{array}{cc} \cos \alpha+\cos \alpha & -\sin \alpha+\sin \alpha \\ \sin \alpha-\sin \alpha & \cos \alpha+\cos \alpha \end{array}\right]
= \left[\begin{array}{cc} 2 \cos \alpha & 0 \\ 0 & 2 \cos \alpha \end{array}\right] = \left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]
2 cos α = 1 ⇒ cos α = \frac { 1 }{ 2 }
α = \frac { π }{ 3 }
∴ Part (B) is the correct answer.