Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js

GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Gujarat Board GSEB Textbook Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise Textbook Questions and Answers.

Gujarat Board Textbook Solutions Class 11 Maths Chapter 7 Integrals Miscellaneous Exercise

Integrate the following functions w.r.t x (questions from 1 to 24):
Question 1.
\frac{1}{x-x^{3}}
Solution:
Let \frac{1}{x-x^{3}} = \frac{1}{x(1+x)(1-x)}
= \frac{A}{x} + \frac{B}{1+x} + \frac{C}{1-x}
⇒ 1 = A(1 + x)(1 – x) + Bx(1 – x) + Cx(1 + x) ………… (1)
Putting x = 0 in (1), we get
1 = A(1 + 0)(1 – 0) ⇒ A = 1.
Putting x = – 1 in (1), we get
1 = B(- 1)(1 + 1) ⇒ B = – \frac{1}{2}
Putting x = 1 in (1), we get
1 = C(1)(1 + 1) ⇒ C = \frac{1}{2}.
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 1

GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 2.
\frac{1}{\sqrt{x+a}+\sqrt{x+b}}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 2

Question 3.
\frac{1}{x \sqrt{a x-x^{2}}}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 3

Question 4.
\frac{1}{x^{2}\left(x^{4}+1\right)^{\frac{3}{4}}}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 4

GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 5.
\frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 5

Question 6.
\frac{5 x}{(x+1)\left(x^{2}+9\right)}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 6

Question 7.
\frac{sinx}{sin(x-a)}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 7
= cos a∫1 dx + sin a∫cot(x – a) dx
= (cos a)x + sin a log |sin(x – a)| + C
= x cos a + sin a log + |sin(x – a)| + C.

GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 8.
\frac{e^{5 \log x}-e^{4 \log x}}{e^{3 \log x}-e^{2 \log x}}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 8

Question 9.
\frac{\cos x}{\sqrt{4-\sin ^{2} x}}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 9

Question 10.
\frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cos ^{2} x}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 10

GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 11.
\frac{1}{cos(x+a)cos(x+b)}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 11

Question 12.
\frac{x^{3}}{\sqrt{1-x^{8}}}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 12

Question 13.
\frac{e^{x}}{\left(1+e^{x}\right)\left(2+e^{x}\right)}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 13

GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 14.
\frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 14

Question 15.
cos3xelog sinx
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 15

Question 16.
e3logx(x4 + 1)-1
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 16

GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 17.
f'(ax + b)[f(ax + b)]n
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 17

Question 18.
\frac{1}{\sqrt{\sin ^{3} x \sin (x+\alpha)}}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 18
Put cos α + cot x sin α = t so that – cosec2x sin α = dt.
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 19

Question 19.
\frac{\sin ^{-1} \sqrt{x}-\cos ^{-1} \sqrt{x}}{\sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}} x ∈ [0, 1]
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 20

GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 20.
\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 21

Question 21.
\frac{2+sin2x}{1+cos2x}ex
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 22

Question 22.
\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 23

GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 23.
tan-1\sqrt{\frac{1-x}{1+x}}
Solution:
Put x = cosθ so that dx = – sinθ dθ,
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 24

Question 24.
\frac{\sqrt{x^{2}+1}\left[\log \left(x^{2}+1\right)-2 \log x\right]}{x^{4}}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 25

Evaluate the following definite integrals from questions 25 to 33:
Question 25.
\int_{\frac{\pi}{2}}^{π} ex(\frac{1-sinx}{1+cosx})dx
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 26

GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 26.
\int_{0}^{\frac{\pi}{4}} \frac{\sin x \cos x}{\cos ^{4} x+\sin ^{4} x} dx
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 27

Question 27.
\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\cos ^{2} x+4 \sin ^{2} x} dx
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 28

Question 28.
\int\frac{3}{6} \frac{\sin x+\cos x}{\sqrt{\sin 2 x}} dx
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 29

GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 29.
\int_{0}^{1} \frac{d x}{\sqrt{1+x}-\sqrt{x}}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 30

Question 30.
\int_{0}^{\frac{\pi}{4}} \frac{\sin x+\cos x}{9+16 \sin 2 x} dx
Solution:
Put sin x – cos x = t so that (cos x + sin x) dx = dt
and 1 – 2sin x cos x = t ⇒sin 2x = 1 – t2.
When x = \frac{π}{4}, t = sin \frac{π}{4} – cos \frac{π}{4} = \frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}} = 0.
When x = 0, t = sin 0 – cos 0 = – 1.
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 31

Question 31.
\int_{0}^{\frac{\pi}{2}}sin2xtan-1x(sin x)dx
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 32

Question 32.
\int_{0}^{\pi} \frac{xtanx}{secx+tanx} dx
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 33
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 33a

GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 33.
\int_{1}^{4}[|x – 1| + |x – 2| + |x – 3|] dx
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 34

Prove the following questions 34 to 39:
Question 34.
\int_{1}^{3} \frac{d x}{x^{2}(x+1)} = \frac{2}{3} + log \frac{2}{3}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 35

GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 35.
\int_{0}^{1} xex dx = 1
Solution:
Let L.H.S. = I = \int_{0}^{1} xex dx.
Integrating by parts, taking x as a first function, we get
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 36

Question 36.
\int_{-1}^{-1} x17cos4x dx = 0
Solution:
I = \int_{-1}^{1} x17cos4x dx.
Let f(x) = x17cos4x, f(- x) = (- x)17cos4(- x)
= – x17cos4x
∴ I = 0 = R.H.S. [∵ \int_{-a}^{a} f(x) = 0 if f(- x) = – f(x)]

Question 37.
\int_{0}^{\frac{\pi}{2}}sin3x dx = \frac{2}{3}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 37

Question 38.
\int_{0}^{\frac{\pi}{2}}2tan3 x dx = 1 – log x
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 38

GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 39.
\int_{0}^{1}sin-1x dx = \frac{π}{2} – 1
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 39

Question 40.
Evaluate \int_{0}^{1}e2-3x dx as a limit of a sum.
Solution:
Here, a = 0, b = 1, f(x) = e2-3x, h = \frac{1-0}{n} = \frac{1}{n} or nh = 1.
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 40

GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Choose the correct answers in the following questions 41 to 44:
Question 41.
\frac{d x}{e^{x}+e^{-x}} is equal to
(A) tan-1(e-x) + C
(B) tan-1(e-x) + C
(C) log(ex – e-x) + C
(D) log(ex + e-x) + C
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 41
∴ Part (A) is the correct answer.

Question 42.
\frac{\cos 2 x}{(\sin x+\cos x)^{2}} dx is equal to
(A) \frac{-1}{sinx+cosx} + C
(B) log|sin x + cos x| + C
(C) log|sin x – cos x| + C
(D) \frac{1}{(\sin x+\cos x)^{2}}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 42
∴ Part (B) is the correct answer.

GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 43.
If f(a + b – x) = f(x), then \int_{a}^{b} x f(x) dx is equal to
(A) \frac{a+b}{2} \int_{a}^{b} f(b – x) dx
(B) \frac{a+b}{2} \int_{a}^{b} f(b + x) dx
(C) \frac{b-a}{2} \int_{a}^{b} f(x) dx
(D) \frac{a+b}{2} \int_{a}^{b} f(x) dx
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 43
∴ Part (D) is the correct answer.

GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise

Question 44.
The value of \int_{0}^{1} tan-1(\frac{2 x-1}{1+x-x^{2}}) dx is
(A) 1
(B) 0
(C) – 1
(D) \frac{π}{4}
Solution:
GSEB Solutions Class 12 Maths Chapter 7 Integrals Miscellaneous Exercise img 44
Adding (1) and (2), we get
2I = 0 or I = 0.
∴ Part (B) is the correct answer.

Leave a Comment

Your email address will not be published. Required fields are marked *