Gujarat Board GSEB Textbook Solutions Class 12 Maths Chapter 7 Integrals Ex 7.1 Textbook Questions and Answers.
Gujarat Board Textbook Solutions Class 11 Maths Chapter 7 Integrals Ex 7.1
Find an antiderivative (or integral) of the following by the method of inspection:
Question 1.
sin 2x
Solution:
We know that \frac{d}{dx} cos 2x = – 2sin 2x.
or \frac{d}{dx} (- \frac{1}{2} cos 2x) = sin 2x
∴ ∫sin 2x dx = – \frac{1}{2} cos 2x + C.
Question 2.
cos 3x
Solution:
2. We know that \frac{d}{dx} (sin 3x) = 3 cos 3x.
⇒ cos 3x = \frac{1}{3} \frac{d}{dx} (sin 3x)
⇒ cos 3x = \frac{d}{dx} (\frac{1}{3} sin 3x)
∴ An antiderivative of cos 3x is \frac{1}{3} sin 3x + C.
By using free Taylor Series Calculator, you can easily find the approximate value of the integration function
Question 3.
e2x
Solution:
We know that
\frac{d}{dx}(e2x) = 2e2x.
⇒ e2x = \frac{1}{2} \frac{d}{dx} (e2x)
⇒ e2x = \frac{d}{dx} (\frac{1}{2} e2x)
∴ An antiderivative of e2x is \frac{1}{2} e2x + C.
Question 4.
(ax + b)2
Solution:
We know that \frac{d}{dx} (ax + b)3 = 3a(ax + b)2.
⇒ (ax + b)2 = \frac{1}{3a} \frac{d}{dx}(ax + b)3
⇒ (ax + b)2 = \frac{d}{dx}[\frac{1}{3a}(ax + b)3]
∴ An antiderivative of (ax + b)2 = \frac{1}{3a}(ax + b)3 + C.
Question 5.
sin 2x – 4e3x
Solution:
We know that \frac{d}{dx}(cos 2x) = – 2 sin 2x.
⇒ sin 2x = \frac{d}{dx}(-\frac{1}{2} cos 2x)
and \frac{d}{dx}(4e3x) = 4 × 3e3x
⇒ 4e3x = \frac{d}{dx}(\frac{1}{3} e3x)
∴ An antiderivative of sin 2x – 4e3x is – \frac{1}{2} cos 2x – \frac{4}{3}e3x + C.
Find the following integrals:
Question
6. ∫(4e3x + 1)dx
Solution:
Question 7.
∫x2(1 – \frac{1}{x^{2}})dx
Solution:
Question 8.
∫(ax2 + bx + c)dx
Solution:
Question 9.
∫(2x2 + ex) dx
Solution:
Question 10.
∫(\sqrt{x} – \frac{1}{\sqrt{x}})2 dx
Solution:
Question 11.
∫\frac{x^{3}+5 x^{2}-4}{x^{2}}dx
Solution:
Question 12.
∫\frac{x^{3}+3 x+4}{\sqrt{x}}dx
Solution:
Question 13.
∫\frac{x^{3}-x^{2}+x-1}{x-1}dx
Solution:
Question 14.
∫(1 – x)\sqrt{x} dx
Solution:
Question 15.
∫\sqrt{x}(3x2 + 2x + 3)dx
Solution:
Question 16.
∫(2x – 3cosx + ex)dx
Solution:
Question 17.
∫(2x2 – 3sinx + 5\sqrt{x})dx
Solution:
Question 18.
∫secx(sec x + tan x)dx
Solution:
Question 19.
∫\frac{sec^{2}x}{cosec^{2}x}dx.
Solution:
Question 20.
∫\frac{2-3 \sin x}{\cos ^{2} x} dx.
Solution:
Choose the correct answers in the following questions 21 and 22:
Question 21.
The antiderivative of (\sqrt{x} + \frac{1}{\sqrt{x}}) equals
(A) \frac{1}{3}x1/3 + 2x1/2 + C
(B) \frac{2}{3}x2/3 + \frac{1}{2}x2 + C
(C) \frac{2}{3}x3/2 + 2x1/2 + C
(D) \frac{3}{2}x3/2 + \frac{1}{2}x1/2 + C
Solution:
⇒ Part(C) is the correct answer.
Question 22.
If \frac{d}{dx} f(x) = 4x3 – \frac{3}{x^{4}} such that f(2) = 0, then f(x) is
(A) x4 + \frac{1}{x^{3}} – \frac{129}{8}
(B) x3 + \frac{1}{x^{4}} + \frac{129}{8}
(C) x4 + \frac{1}{x^{3}} + \frac{129}{8}
(D) x3 + \frac{1}{x^{4}} – \frac{129}{8}
Solution:
Putting C = – \frac{129}{8} in (1), we get
f(x) = x4 + \frac{1}{x^{3}} – \frac{129}{8}
⇒ Part(A) is the correct answer.