Gujarat Board GSEB Textbook Solutions Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 Textbook Questions and Answers.
Gujarat Board Textbook Solutions Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2
Prove the following :
Question 1.
3sin-1x = sin-1(3x – 4x³), x ∈ [- \frac { 1 }{ 2 }, \frac { 1 }{ 2 } ]
Solution:
Let sin-1 = θ
∴ sin θ = x
Also,
∴ sin 3θ = 2 sinθ – 4sin³θ = 3x – 4x³
∴ 3θ = sin-1(3x – 4x³)
or 3 sin-1x = sin-1(3x – 4x³), x ∈ [- \frac { 1 }{ 2 }, \frac { 1 }{ 2 } ]
Question 2.
3cos-1x = cos-1(4x³ – 3x), x ∈ [\frac { 1 }{ 2 }, 1]
Solution:
Let cos-1x = θ.
cos θ = x.
Now, cos 3θ = 4cos³θ – 3 cos θ = 4x³ – 3x.
or 3θ = cos-1(4x³ – 3x)
or 3 cos-1x = cos-1(4x³ – 3x), x ∈ [- \frac { 1 }{ 2 }, 1]
Question 3.
tan-1\frac { 2 }{ 11 } + tan-1\frac { 7 }{ 24 } = tan-1\frac { 1 }{ 2 }
Solution:
Question 4.
2 tan-1\frac { 1 }{ 2 } + tan-1\frac { 1 }{ 7 } = tan-1\frac { 31 }{ 17}
Solution:
Question 5.
tan-1\left(\frac{\sqrt{1-x^{2}}-1}{x}\right), x ≠ 0
Solution:
Putting x = tan θ, we get θ = tan-1x.
Question 6.
tan-1\frac{1}{\sqrt{x^{2}-1}}, |x| > 1
Solution:
Putting x = sec θ, ⇒ θ = sec-1x.
Question 7.
tan-1\frac { 1-cos x}{1+cos x }, x < π
Solution:
Question 8.
tan-1\frac {cos x-sin x}{cos x+sin x }, x < π
Solution:
Question 9.
tan-1\frac{x}{\sqrt{a^{2}-x^{2}}}
Solution:
Putting x = a sin θ, we get θ = sec-1\frac { x }{ a }.
So,
Question 10.
tan-1\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right)
Solution:
Putting x = a tan θ, we get θ = tan-1\frac { x }{ a }.
So,
Question 11.
tan-1[ 2 cos(2 sin-1\frac { 1 }{ 2 }) ]
Solution:
Question 12.
cot (tan-1a + cot-1a)
Solution:
cot (tan-1a + cot-1a) = cot\frac { π }{ 2 } = 0 [ ∵ tan-1x + cot-1x = \frac { π }{ 2 } ]
Question 13.
tan\frac { 1 }{ 2 }[sin-1 \frac{2 x}{1+x^{2}} + cos-1 \frac{1-y^{2}}{1+y^{2}} ], |x| < 1, y > 0 and xy < 1
Solution:
Putting x = tan θ, we get θ = tan-1a
Question 14.
If sin(sin-1\frac { 1 }{ 5 } + cos-1x) = 1, then find the value of x.
Solution:
sin(sin-1\frac { 1 }{ 5 } + cos-1x) = sin\frac { π }{ 2 }
⇒ sin-1\frac { 1 }{ 5 } + cos-1x = sin\frac { π }{ 2 }
or (sin-1\frac { 1 }{ 5 } + cos-1\frac { 1 }{ 5 }) + (- cos-1\frac { 1 }{ 5 }x) = \frac { π }{ 2 }
or \frac { π }{ 2 } – cos-1\frac { 1 }{ 5 } + cos-1x = \frac { π }{ 2 }
or cos-1\frac { 1 }{ 5 } – cos-1x = \frac { π }{ 2 }
or cos-1x = cos-1\frac { 1 }{ 5 }
⇒ x = \frac { 1 }{ 5 }
Question 15.
If tan-1\frac { x-1 }{ x+2 } + tan-1\frac { x-1 }{ x+2 } = \frac { π }{ 4 }, then find the value of x.
Solution:
Question 16.
If sin-1(sin\frac { 2π }{ 3})
Solution:
sin-1(sin\frac { 2π }{ 3 }) = sin-1[ sin(π – \frac { π }{ 3 }) ]
= sin-1[sin\frac { π }{ 3 }] = \frac { π }{ 3 }.
Please note : sin-1(sin\frac { 2π }{ 3 }) ≠ sin\frac { 2π }{ 3 }, since the range of the principal values branch of sin-1 is (-\frac { π }{ 2 }, \frac { π }{ 2 }).
Question 17.
tan-1(tan\frac { 3π }{ 4 })
Solution:
tan-1(tan \frac { 3π }{ 4 } ) = tan-1 tan(π – \frac { π }{ 4 })
= tan-1(- tan\frac { π }{ 4 })
= tan-1[tan(\frac { -π }{ 4 }) ] = – \frac { π }{ 4 }
Again note that tan-1 tan\frac { 3π }{ 4 } ≠ \frac { 3π }{ 4 },
since the range of principal values branch of tan-1 is ( \frac { -π }{ 2 }, \frac { π }{ 2 } ).
Question 18.
tan-1(sin-1\frac { 3 }{ 5 } + cot-1\frac { 3 }{ 2 })
Solution:
tan-1(sin-1\frac { 3 }{ 5 } + cot-1\frac { 3 }{ 2 })
Let sin-1\frac { 3 }{ 5 } = θ ∴ sin θ = \frac { 3 }{ 5 }.
Question 19.
cos-1(cos \frac { 7π }{ 6 }) is equal to
(A) \frac { 7π }{ 6 }
(B) \frac { 5π }{ 6 }
(C) \frac { π }{ 5 }
(D) \frac { π }{ 6 }
Solution:
cos-1(cos \frac { 7π }{ 6 }) = cos-1cos ( π + \frac { π }{ 6 } )
= cos-1(- cos\frac { π }{ 6 } )
= cos-1[cos ( π – \frac { π }{ 6 } )
= cos-1cos\frac { 5π }{ 6 }
= \frac { 5π }{ 6 }.
Note that cos-1(cos \frac { 7π }{ 6 } ) ≠ \frac { 7π }{ 6 } since
the range of principal value branch of cos-1 is [0, π].
∴ cos-1(cos \frac { 7π }{ 6 }) = cos-1cos \frac { 5π }{ 6 } = \frac { 5π }{ 6 }.
⇒ Part (B) is the correct answer.
Question 20.
sin[ \frac { π }{ 3 }-sin-1(-\frac { 1 }{ 2 }) ] is equal to
(A) \frac { 1 }{ 2 }
(B) \frac { 1 }{ 3 }
(C) \frac { 1 }{ 4 }
(D) 1
Solution:
sin-1(-\frac { 1 }{ 2 }) = sin-1sin ( – \frac { π }{ 6 } ) = – \frac { π }{ 6 }
∴ sin[\frac { π }{ 3 }-sin-1(-\frac { 1 }{ 2 }) ] = sin[ \frac { π }{ 3 } – (-\frac { π }{ 6 } )
= sin( \frac { π }{ 3 } + \frac { π }{ 6 })
= sin \frac { π }{ 2 } = 1.
⇒ Part (B) is the correct answer.
Question 21.
tan-1\sqrt{3} – cot-1(-\sqrt{3}) is equal to
(A) π
(B) \frac { π }{ 2 }
(C) 0
(D) 2\sqrt{3}
Solution:
tan-1\sqrt{3} = tan-1(tan\frac { π }{ 3 }) = \frac { π }{ 3 }
and cot-1\sqrt{3} = cot-1(-cot\frac { π }{ 6 } )
= cot-1cot ( π – \frac { π }{ 6 } )
= cot-1cot\frac { 5π }{ 6 }
= \frac { 5π }{ 6 }.
since the range of principal value branch of cot-1 is (0, π).
∴ tan-1\sqrt{3} – cot-1(-\sqrt{3}) = \frac { π }{ 3 } – (\frac { 5π }{ 6 }) = \frac { 2π – 5π }{ 6 }
= \frac { -3π }{ 6 } = – \frac { π }{ 2 }.
Hence, part (B) is correct answer.