Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js

GSEB Solutions Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1

Gujarat Board GSEB Textbook Solutions Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1 Textbook Questions and Answers.

Gujarat Board Textbook Solutions Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1

GSEB Solutions Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1

Find the principal values of the following:

Question 1.
sin-1(-\frac { 1 }{ 2 })
Solution:
Let sin-1(-\frac { 1 }{ 2 }) = y
∴ sin y = \frac { 1 }{ 2 } = – sin\frac { π }{ 6 } = sin(-\frac { π }{ 6 })
The range of principal value branch of sin-1 is [-\frac { π }{ 2 }, \frac { π }{ 2 }].
Hence, principal value of sin-1(-\frac { 1 }{ 2 }) is – \frac { π }{ 6 }.

Question 2.
cos-1\left(-\frac{\sqrt{3}}{2}\right)
Solution:
Let cos-1\left(\frac{\sqrt{3}}{2}\right) = y
∴ cos y = \left(\frac{\sqrt{3}}{2}\right) = – cos\frac { π }{ 6 }
The range of principal value branch is (0, π)
∴ principal value of cos-1\left(\frac{\sqrt{3}}{2}\right) is \frac { π }{ 6 }.

GSEB Solutions Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1

Question 3.
cosec-1(2)
Solution:
Let cosec-1(2) = y
∴ cosec y = 2 = cosec\frac { π }{ 6 }
The range of principal value branch of cosec-1 is [-\frac { π }{ 2 }, \frac { π }{ 2 }] – [0]
∴ principal value of cosec-1(2) is \frac { π }{ 6 }.

Question 4.
tan-1(-\sqrt{3})
Solution:
Let tan-1(-\sqrt{3}) = y
∴ tan y = 2 = – \sqrt{3} = – tan\frac { π }{ 3 } = tan(-\frac { π }{ 3 })
The range of principal value branch of tan-1 is [-\frac { π }{ 2 }, \frac { π }{ 2 }]
∴ principal value of
tan-1(-\sqrt{3}) is – \frac { π }{ 3 }.

Question 5.
cos-1(-\frac { 1 }{ 2 })
Solution:
Let cos-1(-\frac { 1 }{ 2 }) = y
∴ cos y = –\frac { 1 }{ 2 } = – cos\frac { π }{ 3 } = cos(π – \frac { π }{ 3 }
= cos \frac { 2π }{ 3 }
The range of principal value branch is (0, π)
∴ principal value of cos-1(-\frac { 1 }{ 2 }) is \frac { 2π }{ 3 }.

GSEB Solutions Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1

Question 6.
tan-1(-1)
Solution:
Let tan-1(-1) = y.
∴ tan y = – 1 = tan\frac { π }{ 4 }) = tan(\frac { -π }{ 4 })
The range of principal value branch of tan-1 is [-\frac { π }{ 2 }, \frac { π }{ 2 }]
∴ principal value of tan-1(-1) is \frac { π }{4 }.

Question 7.
sec-1\left(-\frac{2}{\sqrt{3}}\right)
Solution:
Let sec-1\left(\frac{2}{\sqrt{3}}\right) = y
∴ sec y = \left(\frac{2}{\sqrt{3}}\right) = sec(\frac { π }{ 6 })
The range of principal value branch of sec-1 is [0, π], (\frac { π }{ 2 })
∴ principal value of sec-1\left(\frac{2}{\sqrt{3}}\right) is \frac { π }{6 }.

Question 8.
cot-1(\sqrt{3})
Solution:
Let cot-1(\sqrt{3}) = y
∴ cot y = \sqrt{3} = cot\frac { π }{ 6 }
The range of principal value branch of cot-1 is [0, π]
∴ principal value of cot-1\sqrt{3} is \frac { π }{ 6 }.

Question 9.
cos-1\left(-\frac{1}{\sqrt{2}}\right)
Solution:
Let cos-1\left(-\frac{1}{\sqrt{2}}\right) = y
∴ cos y = \left(-\frac{1}{\sqrt{2}}\right) = cos(\frac { π }{ 4 }) = cos(π – \frac { π }{ 4 })
The range of principal value branch of cos-1 is [0, π].
∴ principal value of cos-1\left(-\frac{1}{\sqrt{2}}\right) is \frac { 3π }{4 }.

GSEB Solutions Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1

Question 10.
cosec-1 (-\sqrt{2})
Solution:
Let cosec-1(-\sqrt{2}) = y
∴ cosec y = –\sqrt{2} = – cosec\frac { π }{ 4 } = cosec (- \frac { π }{ 4 }).
The range of principal value branch of cosec-1 is (- \frac { π }{ 2 }, \frac { π }{ 2 }) – {0}
∴ principal value of cosec-1(-\sqrt{2}) is – \frac { π }{ 4 }.

Question 11.
tan-1(1) + cos-1(-\frac { 1 }{ 2 }) + sin-1(\frac { -1 }{ 2 })
Solution:
tan-1(1) + cos-1(-\frac { 1 }{ 2 }) + sin-1(\frac { -1 }{ 2 })
Now, tan-1 1 = \frac { π }{ 4 },
Since range of principal value branch of cos-1 is [0, π]. So,
GSEB Solutions Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1 1

Question 12.
cos-1(\frac { 1 }{ 2 }) + 2 sin-1(\frac { 1 }{ 2 })
Solution:
cos-1(\frac { 1 }{ 2 }) + 2 sin-1(\frac { 1 }{ 2 })
Now, cos-1(\frac { 1 }{ 2 }) = \frac { π }{ 3 }
and sin-1(\frac { 1 }{ 2 }) = \frac { π }{ 6 }
∴ cos-1(\frac { 1 }{ 2 }) + 2 sin-1(\frac { 1 }{ 2 })
= \frac { π }{ 3 } + 2 x \frac { π }{ 6 } = \frac { 2π }{ 3 }.

Question 13.
If sin-1 = y, then
(A) 0 ≤ y ≤ π
(B) – \frac { π }{ 2 } ≤ y ≤ \frac { π }{ 2 }
(C) 0 < y < π
(D) – \frac { π }{ 2 } < y \frac { π }{ 2 }
Solution:
The range of principal value branch of sin-1 is [-\frac { π }{ 2 }, \frac { π }{ 2 }]
∴ if sin-1 x = y, then – \frac { π }{ 2 } ≤ y ≤ \frac { π }{ 2 }
∴ Part (B) is correct.

GSEB Solutions Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1

Question 14.
tan-1\sqrt{3} – sec-1(-2) is equal to
(A) π
(B) – \frac { π }{ 3 }
(C) \frac { π }{ 3 }
(D) \frac { 2π }{ 3 }
Solution:
tan-1\sqrt{3} = \frac { π }{ 3 }
and sec-1(-2) = π – \frac { π }{ 3 } = \frac { 2π }{ 3 },
since principal value branch of sec-1 is [0, π] – {\frac { π }{ 2 }}
∴ tan-1\sqrt{3} – sec-1(-2) = \frac { π }{ 3 }\frac { 2π }{ 3 }
= – \frac { π }{ 3 }
∴ Part (B) is correct.

Leave a Comment

Your email address will not be published. Required fields are marked *