Processing math: 100%

GSEB Solutions Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations Ex 5.3

Gujarat Board GSEB Textbook Solutions Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations Ex 5.3 Textbook Questions and Answers.

Gujarat Board Textbook Solutions Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations Ex 5.3

Solve each of the following equations:
1. x2 + 3 = 0
2. 2x2 + x + 1 = 0
3. x2 + 3x + 9 = 0
4. – x2 + x – 2 = 0
5. x2 + 3x + 5 = 0
6. x2 – x + 2 = 0
7. \sqrt{2}x2 + x + \sqrt{2} = 0
8. \sqrt{3}x2\sqrt{2}x + 3\sqrt{3} = 0
9. x2 + x + \frac{1}{\sqrt{2}} = 0
10. x2 + \frac{x}{\sqrt{2}} + 1 = 0.
Solutions to questions 1 to 10:
1. x2 + 3 = 0 ⇒ x2 = – 3
∴ x = ±\sqrt{- 3} = ±\sqrt{3i}.

2. 2x2 + x + 1 = 0.
Comparing with ax2 + bx + c = 0,
a = 2, b = 1, c = 1.
∴ b2 – 4ac = 12 – 4.2.1 = 1 – 8 = – 7
∴ x = \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} = \frac{-1 \pm \sqrt{-7}}{2.2} = \frac{-1 \pm \sqrt{7} i}{4}.

GSEB Solutions Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations Ex 5.3

3. x2 + 3x + 9 = 0
∴ a = 1, b = 3, c = 9
∴ b2 – 4ac = 32 – 4.1.9
= 9 – 36
= – 27.
GSEB Solutions Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations Ex 5.3 img 2

4. – x2 + x – 2 = 0 or x2 – x + 2 = 0.
Here, a = 1, b = – 1, c = 2.
∴ b2 – 4ac = (- 1)2 – 4.1.2
= 1 – 8 = – 7.
∴ x = \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} = \frac{-1 \pm \sqrt{-7}}{2.1} = \frac{-1 \pm \sqrt{7} i}{2}.

GSEB Solutions Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations Ex 5.3

5. x2 + 3x + 5 = 0
∴ a = 1, b = 3, c = 5.
∴ b2 – 4ac = 9 – 4.1.5 = 9 – 20 = – 11.
GSEB Solutions Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations Ex 5.3 img 4

6. x2 – x + 2 = 0
∴ a = 1, b = – 1, c = 2.
∴ b2 – 4ac = (- 1)2 – 4.1.2 = 1 – 8 = – 7.
∴ x = \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} = \frac{-1 \pm \sqrt{-7}}{2.1} = \frac{-1 \pm \sqrt{7} i}{2}.

GSEB Solutions Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations Ex 5.3

7. \sqrt{2}x2 + x + \sqrt{2} = 0
∴ a = \sqrt{2}, b = 1, c = \sqrt{2}.
∴ b2 – 4ac = 12 – 4(\sqrt{2}.\sqrt{2}) = 1 – 8 = – 7.
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} = \frac{-1 \pm \sqrt{-7}}{2 \cdot \sqrt{2}} = \frac{-1 \pm \sqrt{-7} i}{2 \sqrt{2}}.

8. \sqrt{3}x2\sqrt{2}x + 3\sqrt{3} = 0
∴ a = \sqrt{3}, b = – \sqrt{2}, c = 3\sqrt{3}.
∴ b2 – 4ac = (- \sqrt{2})2 – 4.\sqrt{3}.3\sqrt{3} = 2 – 36 = – 34.
GSEB Solutions Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations Ex 5.3 img 7

9. x2 + x + \frac{1}{\sqrt{2}} = 0, Multiplying by \sqrt{2}, we get
\sqrt{2x} + \sqrt{2x} + 1 = 0.
∴ a = \sqrt{2}, b = \sqrt{2}, c = 1.
∴ b2 – 4ac = (\sqrt{2})2 – 4.\sqrt{2}.1 = 2 – 4\sqrt{2}.
GSEB Solutions Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations Ex 5.3 img 8

GSEB Solutions Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations Ex 5.3

10. x2 + \frac{x}{\sqrt{2}} + 1 = 0
Multiplying by \sqrt{2}, we get
\sqrt{2}x2 + x + \sqrt{2} = 0.
∴ a = \sqrt{2}, b = 1, c = \sqrt{2}
∴ b2 – 4ac = 12 – 4\sqrt{2}.\sqrt{2} = 1 – 8 = – 7.
∴ x = \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} = \frac{-1 \pm \sqrt{-7}}{2 \sqrt{2}} = \frac{-1 \pm \sqrt{7} i}{2 \sqrt{2}}.

Leave a Comment

Your email address will not be published. Required fields are marked *