Gujarat Board GSEB Textbook Solutions Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations Ex 5.2 Textbook Questions and Answers.
Gujarat Board Textbook Solutions Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations Ex 5.2
Find the modulus and the argument of each of the complex numbers in questions 1 to 2:
1. z = – 1 – i\sqrt{3}
2. z = – \sqrt{3} + i
Solutions to questions 1 to 2:
1. z = – 1 – i\sqrt{3}
∴ Let – 1 – i\sqrt{3} = r(cos θ + isinθ)
∴ – 1 = rcos θ and \sqrt{-3} = r sin θ
Squaring and adding, we get
4 = 1 + 3 = r2(cos2 θ + sin2 θ) = r2
∴ r = \sqrt{4} = 2
tan θ = \frac{\sqrt{3}}{-1} = – \sqrt{3}.
where θ lies in third quadrant.
∴ θ = – 180° + 60° = – 120° = – \frac{2π}{3}
|z| = 2, arg z = – \frac{2π}{3}
2. z = – \sqrt{3} + i = r(cos θ + 180°)
∴ rcos θ = – \sqrt{3}, r sin θ = 1
Squaring and adding (\sqrt{3})2 + 1 = 4
∴ r = 2, we get
tan θ = \frac{-1}{\sqrt{3}} ⇒ θ lies in II Quadrant
∴ θ = 180° – 30° = 150° = \frac{5π}{6}
∴ |z| = 2, arg z = \frac{5π}{6}.
Convert each of the complex numbers given in questions 3 to 8 in the polar form:
3. 1 – i
4. – 1 + i
5. – 1 – i
6. – 3
7. \sqrt{3} + i
8. i
Solutions to questions 3 to 8:
3. If 1 – i = r(cos θ + isin θ)
∴ rcos θ = 1, rsin θ = – 1
Squaring and adding, we get
12 + 12 = r2
∴ r = \sqrt{2}
and tan θ = \frac{- 1}{1} = – 1.
∴ θ lies in IV quadrant, since sin θ is negative and cos θ is positive.
∴ θ = – 45° = – \frac{π}{4}.
∴ Polar form of 1 – i is
\sqrt{2}[cos (- \frac{π}{4}) + isin (- \frac{π}{4})]
4. z = – 1 + i = r(cos θ + isin θ)
∴ rcos θ = – 1, r sin θ = 1
Squaring and adding, we get
r2 = (- 1)2 + 12 = 2 is r = \sqrt{2}.
Here, sin θ is +ve and cos θ is – ve. Therefore, θ lies in the second quadrant.
i.e; θ = π – \frac{π}{4} = \frac{3π}{4}.
∴ z = \sqrt{2}(cos \frac{3π}{4} + isin \frac{3π}{4}).
5. z = – 3 = r(cos θ + i sin θ)
∴ rcos θ = – 1, r sin θ = – 1
Squaring and adding, we get
r2 = (- 1)2 + (- 1)2 = z
∴ r = \sqrt{2}.
6. z = – 3 = r(cos θ + i sin θ)
∴ rcos θ = – 3, rsin θ = 0.
Squaring and adding, we get r2 = (- 3)2
∴ r = 3.
tan θ = 0 ⇒ θ = π [∵ cos π = 0]
∴ – 3 = 3(cos π + isin π).
7. r = \sqrt{3} + i = r(cos π + isinπ)
∴ rcos θ = \sqrt{3}, r sin θ = 1
Squaring and adding, we get
r2 = 3 + 1 = 4, r = 2.
Also, tan θ = \frac{1}{\sqrt{3}}. Also, sin θ and cos θ both are positive.
∴ θ = 30° = \frac{π}{6}.
Polar form of z is 2(cos \frac{π}{6} + isin \frac{π}{6}).
8. z = i = r(cos θ + isin θ)
∴ rcos θ = 0, r.sin θ = 1.
Squaring and adding, we get r2 = 1.
∴ r = 1.
Now, sin θ = 1, cos θ = 0 at θ = \frac{π}{2}.
∴ Polar form of z is cos \frac{π}{2} + isin \frac{π}{2}.