Gujarat Board GSEB Textbook Solutions Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations Ex 5.1 Textbook Questions and Answers.
Gujarat Board Textbook Solutions Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations Ex 5.1
Express each of the complex numbers given in questions 1 to 10 in the form a + ib:
1. (5i) (- \frac{3}{5} i)
2. i9 + i19
3. i-39
4. 3(7 + i7) + i(7 + i7)
5. (1 – i) – (- 1 + i6)
6. (\frac{1}{5} + i\frac{2}{5}) – (4 + i\frac{5}{2})
7. [(\frac{1}{3} + i\frac{7}{3})] + (4 + i\frac{1}{3}) – (- \frac{4}{3} + i)
8. (i – 4)4
9. (\frac{1}{3} + 3i)3
10. (- 2 – \frac{1}{3} i)3
Solutions to questions 1 to 10:
1. (5i) (- \frac{3i}{5}) = (- 5 × \frac{3}{5}) × (i × i)
= – 3i2 = (- 3)(- 1) = 3
= a + ib, where a = 3, b = 0.
2. i9 + i19 = i.i8 + i.i18 = i(i2)4 + i(i2)9
= i(- 1)4 + 1(- 1)9 = i – i = 0.
= a + ib, where a = 0, b = 0.
3. i-39 = \frac{1}{i^{39}} = \frac{1}{i.i^{38}} = \frac{1}{i\left(i^{2}\right)^{19}} = \frac{1}{i(-1)^{19}} = – \frac{1}{i}
= – \frac{1}{i} × \frac{i}{i} = – \frac{i}{i^{2}} = \frac{- i}{- 1} = i
= a + ib, where a = 0, b = 1.
4. 3(7 + i.7) + i(7 + i.7) = (21 + 21i) + (7i + 7i2)
= (21 + 21i) + (7i – 7) = 14 + 28i
= a + ib, where a = 14, b = 28.
5. (1 – i) – (- 1 + i.6) = (1 – i) + (1 – 6i) = 1 + 1 = – i – 6i
= 2 – 7i
= (a + ib), where a = 2, b = – 7.
6. (\frac{1}{5} + i.\frac{2}{5}) – (4 + i.\frac{5}{2}) = (\frac{1}{5} + \frac{2}{5}i) + (- 4 – \frac{5}{2}i)
= \frac{1}{5} – 4 + \frac{2}{5}i – \frac{5}{2}i = – \frac{19}{5} – (- \frac{2}{5} + \frac{5}{2})i
= – \frac{19}{5} – \frac{21}{10}i = a + ib
where a = \frac{- 19}{5} and b = \frac{- 21}{10}.
7. (\frac{1}{3} + i\frac{7}{3}) + (4 + i\frac{1}{3}) – (- \frac{4}{3} + i)
= (\frac{1}{3} + \frac{7}{3}i) + (4 + \frac{1}{3}i) + (\frac{4}{3} – i)
= (\frac{1}{3} + 4 + \frac{4}{3}) + i(\frac{7}{3} + \frac{1}{3} – 1) = \frac{17 }{3} + i.\frac{5}{3}
= (a + ib), where a = \frac{17}{3}, b = \frac{5}{3}.
8. (1 – i)4 = 1 – 4i + 6i2 – 4i3 + i4
= 1 – 4i + 6(- 1) – 4i(i2) + (i2)2
= 1 – 4i – 6 – 4i(- 1) + (- 1)2
= 1 – 4i – 6 + 4i + 1
= (1 – 6 + 1) = – 4 = (a + ib),
where a = – 4, b = 0.
9. (\frac{1}{3} + 3i)3 = (\frac{1}{3})3 + 3.(\frac{1}{3})2 (3i) + 3. (\frac{1}{3})(3i)2 + (3i)3
= \frac{1}{27} + i + 9(- 1) + 27i3
= \frac{1}{27} + i + 9(- 1) + 27ii2
= \frac{1}{27} + i – 9 + 27i(- 1) = \frac{1}{27} + i – 9 – 27i
= (\frac{1}{27} – 9) + (1 – 27)i
= – \frac{242}{27} = – 26i
= a + ib, where a = \frac{- 242}{27}, b = – 26.
10.
= a + ib, where a = – \frac{22}{3}, b = – \frac{107}{27}.
Find the multiplicative inverse of each of the complex numbers given in questions 11 to 13:
11. 4 – 3i
12. \sqrt{5} + 3i
13. – i
Solutions to questions 11 to 13:
11. Multiplicative inverse of 4 – 3i
12. Multiplicative inverse of \sqrt{5} + 3i
13. Multiplicative inverse of – i
= \frac{1}{- i} = \frac{- 1}{i} × \frac{i}{i} = \frac{-i}{i^{2}} = \frac{- i}{- 1} = i.
14. Express the following expression in the form a + ib:
\frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2 i})-(\sqrt{3}-i \sqrt{2})}
Solution: