Gujarat Board GSEB Textbook Solutions Class 11 Maths Chapter 3 Trigonometric Functions Miscellaneous Exercise Textbook Questions and Answers.
Gujarat Board Textbook Solutions Class 11 Maths Chapter 3 Trigonometric Functions Miscellaneous Exercise
1. 2cos \frac{π}{13}cos \frac{9π}{13} + cos \frac{3π}{13} + cos \frac{5π}{13} = 0
2. (sin 3x + sin x)sin x + (cos 3x – cos x)cos x = 0
3. (cos x + cos y)2 + (sin x – sin y)2 = 4 cos2 \frac{x+y}{2}
4. (cos x – cos y)2 + (sin x – sin y)2 = 4 sin2 \frac{x-y}{2}
Solutions to questions 1 – 4:
1. L.H.S. = 2 cos \frac{π}{13}cos \frac{9π}{13} + cos \frac{3π}{13} + cos \frac{5π}{13}
= cos \frac{10π}{13} + cos \frac{8π}{13} + cos \frac{3π}{13} + cos \frac{5π}{13}
[∵ 2cos A cos B = cos (A + B) + cos (A – B)]
= 0 = R.H.S.
2. L.H.S. = (sin 3x + sinx)sinx + (cos3x – cosx)cosx
= sin3xsinx + sin2x + cos3x cosx – cos2x
= (cos 3x cos x + sin 3x sin x) – (cos2x – sin2 x)
= cos (3x – x) – cos 2x + cos2x = cos 2x – cos 2x = 0
= R.H.S.
3. L.H.S. = (cos x + cos y)2 + (sin x – sin y)2
4. L.H.S. = (cos x – cos y)2 + (sin x – sin y)2
Prove that:
5. sin x + sin 3x + sin 5x + sin 7x = 4cos x cos 2x sin 4x
6. \frac{(sin 7x + sin 5x) + (sin 9x + sin 3x)}{(cos 7x + cos 5x) + (cos 9x + cos 3x)} = tan 6x
7. sin 3x + sin 2x – sin x = 4sin x cos \frac{x}{2} cos \frac{3x}{2}
solutions:
5. L.H.S. = sin x + sin 3x + sin 5x + sin 7x
= (sin 7x + sin x) + (sin 5x + sin 3x)
= 2sin \frac{7x + x}{2}cos \frac{7x – x}{2} + 2sin \frac{5x + 3x}{2}cos \frac{5x – 3x}{2}
= 2sin 4x cos 3x + 2 + 2 sin 4x cos x
= 2sin 4x[cos 3x + cos x]
= 2sin 4x. 2cos \frac{3x+x}{2}cos \frac{3x-x}{2}
= 4 sin 4x. cos 2x. cos x
= 4cos x cos 2x. sin 4x = R.H.S.
6. L.H.S. =
7. L.H.S. = sin 3x + (sin 2x – sin x)
Find sin \frac{x}{2}, cos \frac{x}{2} and tan \frac{x}{2} in each of the following problems:
8. tan x = – \frac{4}{3}, x in quadrant II.
9. cos x = – \frac{1}{3}, x in quadrant III.
10. sin x = \frac{1}{4}, x in quadrant II.
Solutions to questions (8 – 10):
8. since x lies in the second quadrant, therefore cos x is negative.
Now x, lies in 2nd quadrant
⇒ \frac{π}{2} < x < π ⇒ \frac{π}{4} < \frac{x}{2} < \frac{π}{2}
⇒ \frac{x}{2} lies in first quadrant.
⇒ sin \frac{x}{2}, cos \frac{x}{2} and tan \frac{x}{2} are positive.
Since x lies in quadrant III, therefore
180° < x < 270°
⇒ 90° < \frac{x}{2} < 135°
or \frac{x}{2} lies in quadrant II.
Since x lies in quadrant II, therefore
cos x < 0.
But x lies in quadrant II.
But cos \frac{x}{2} > 0 for 45° ≤ \frac{x}{2} ≤ 90°
= 4 + \sqrt{15}.