Processing math: 100%

GSEB Solutions Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.4

Gujarat Board GSEB Textbook Solutions Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.4 Textbook Questions and Answers.

Gujarat Board Textbook Solutions Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.4

Find the principal and general solutions of the following equations:
1. tan x = \sqrt{3}
2. sec x = 2
3. cot x = – \sqrt{3}
4. cosec x = – 2
Solutions to questions 1 – 4:
1. tan x = \sqrt{3} = tan 60°.
∴ Principal value of x = 60° = \frac{π}{3} radians.
If tan x = tan α, when a is the principal value of θ,
then x = nπ + α.
∴ General value of x = nπ + \frac{π}{3}

2. sec x = 2 = sec 60° or cos x = \frac{1}{2} = cos 60°.
∴ Principal value = 60°= \frac{π}{3} radians.
For cos θ = cos α, θ = 2nπ ± α.
∴ General value of x = 2nn ± \frac{π}{3}.

GSEB Solutions Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.4

3. cot x = – \sqrt{3} ⇒ tan x = – \frac{1}{\sqrt{3}}
Now, tan 30° = \frac{1}{\sqrt{3}} ⇒ tan (180° – 30°) = – tan 30°.
= – \frac{1}{\sqrt{3}} or tan 150° = – \frac{1}{\sqrt{3}}.
Thus, principle value of x = 150° = \frac{5π}{6} radians.
∴ General value of x = nπ + α
= nπ + \frac{5π}{6}

4. cosec x = – 2 or sin x = – \frac{1}{2}
sin 30° = \frac{1}{2} or sin (- 30°) = – sin 30° = – \frac{1}{2}.
∴ Principal value of x = – 30° = – \frac{π}{6}.
So, general value of x = nπ + (- 1)nα
= nπ + (- 1)n (- \frac{π}{6}) = nπ – (- 1)n (\frac{π}{6}).

Find the solution for each of the following equations:
5. cos 4x = cos 2x
6. cos 3x + cos x – cos 2x = 0
7. sin 2x + cos x = 0
8. sec2 2x = 1 – tan 2x
9. sin x + sin 3x + sin 5x = 0
Solutions to questions 5 – 10:

5. cos 4x = cos 2x
or cos 2x – cos 4x = 0.
or 2 sin \frac{2x+4x}{2}sin \frac{4x-2x}{2} = 0
or 2sin 3x sin x = 0.
If sin 3x = 0, then 3x = nπ or x = \frac{nπ}{3}.
If sin x = 0, then x = nπ.

GSEB Solutions Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.4

6. cos 3x + cos x – cos 2x = 0
or 2cos \frac{3x+x}{2}cos \frac{3x-x}{2} – cos 2x = 0.
or 2 cos 2x cosx – cos 2x = 0
or cos 2x(2 cos x – 1) = 0.
If cos 2x = 0, then 2x = (2n + 1)\frac{π}{2} ⇒ x = (2n + 1)\frac{π}{4}.
If 2cos x – 1 = 0, cos x = \frac{1}{2} = cos 60° = cos\frac{π}{3}.
⇒ x = 2nπ ± \frac{π}{3}.

7. sin 2x + cos x = 0
or 2sin x cos x + cos x = 0
or cos x(2sin x + 1) = 0.
sin x = – \frac{1}{2} = sin(π + \frac{π}{6}) = sin \frac{7π}{6} ⇒ x = nπ + (- 1)n \frac{7π}{6}.

8. sec2 2x = 1 – tan 2x
⇒ 1 + tan2 2x = 1 – tan 2x = 0
⇒ tan2 2x + tan 2x = 0
⇒ tan 2x(tan 2x + 1) = 0.
If tan 2x = 0, then 2x = nπ or x = \frac{nπ}{2}
If tan 2x + 1 = 0, then tan 2x = – 1 = tan (π – \frac{π}{4}) = tan \frac{3π}{4}
⇒ 2x = nπ + \frac{3π}{4} or x = \frac{nπ}{2} + \frac{3π}{8}.

GSEB Solutions Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.4

9. sin x + sin 3x + sin 5x = 0
or (sin 5x + sin x) + sin 3x = 0.
or 2 sin \frac{5x+x}{2}cos \frac{5x-x}{2} + sin 3x = 0
or 2 sin 3x cos 2x + sin 3x = 0
or sin 3x(2 cos 2x + 1) = 0.
If sin 3x = 0, then 3x = nπ or x = \frac{nπ}{3}
If 2cos 2x + 1 = 0, then cos 2x = – \frac{1}{2} = cos (π – \frac{π}{3}) = cos \frac{2π}{3}
∴ 2x = 2nπ ± \frac{2π}{3} or x = nπ ± \frac{π}{3}.

Leave a Comment

Your email address will not be published. Required fields are marked *